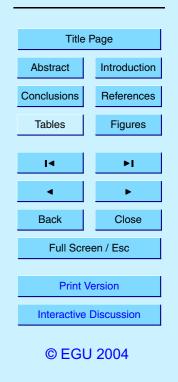
Atmos. Chem. Phys. Discuss., 4, 2513–2531, 2004 www.atmos-chem-phys.org/acpd/4/2513/ SRef-ID: 1680-7375/acpd/2004-4-2513 © European Geosciences Union 2004




ACPD

4, 2513-2531, 2004

Liquid particle in the Arctic stratosphere

C. Weisser et al.



# Composition analysis of liquid particles in the Arctic stratosphere

C. Weisser<sup>1</sup>, K. Mauersberger<sup>1</sup>, J. Schreiner<sup>1</sup>, N. Larsen<sup>2</sup>, F. Cairo<sup>3</sup>, A. Adriani<sup>4</sup>, J. Ovarlez<sup>5</sup>, and T. Deshler<sup>6</sup>

<sup>1</sup>Max-Planck-Institute for Nuclear Physics, Heidelberg, Germany

<sup>2</sup>Danish Meteorological Institute, Copenhagen, Denmark

<sup>3</sup>Institute for Atmospheric Science and Climate, Consiglio Nazionale delle Ricerche, Rome, Italy

<sup>4</sup>Institute for Interplanetary Space Physics, Consiglio Nazionale delle Ricerche, Rome, Italy

<sup>5</sup>Laboratoire de Meteorologie Dynamique, Ecole Polytechnique, Palaiseau, France

<sup>6</sup>University of Wyoming, Laramie, Wyoming, USA

Received: 8 April 2004 - Accepted: 22 April 2004 - Published: 12 May 2004

Correspondence to: C. Weisser (weisser@mpi-hd.mpg.de)

# Abstract

Synoptic scale polar stratospheric clouds (PSCs) that formed without the presence of mountain leewaves were observed in early December 2002 from Kiruna/Sweden using balloon-borne instruments. The physical, chemical, and optical properties of the particles were measured. Within the PSC solid particles existed whenever the 5 temperature was below the equilibrium temperature for nitric acid trihydrate and liquid particles appeared when the temperature fell below an even lower threshold about 3 K above the frost point. The correlation of liquid supercooled ternary solution aerosols with local temperatures is a pronounced feature observed during this flight although the molar ratios H<sub>2</sub>O/HNO<sub>3</sub> were about a factor of 2 higher than model predictions. 10 In addition HCI has been measured for the first time in liquid aerosols. The chlorine isotope signature served as a unique tool to identify unambiguously HCI dissolved in STS particles. Within a narrow temperature range of about three degrees above the frost point, measured HCI molar ratios are below 1 weight%. There is only fair agreement with model predictions. 15

#### 1. Introduction

Substantial progress has been made during the last few years to understand the formation and distribution of polar stratospheric cloud (PSC) particles, especially over Northern Europe. New instruments and well-organized combinations of experiments

- on balloon payloads or research aircrafts have advanced our understanding on formation processes, composition, size, phase, and temperature dependence of PSCs. A European-American campaign in 1999/2000 (SOLVE/THESEO 2000) was particularly successful, producing highlights such as the first stratospheric measurement of solid nitric acid trihydrate (NAT) particles (Voigt et al., 2000) and of unusually large PSC particles within the polar vertex (Eaboy et al., 2001). A comprehensive description of
- <sup>25</sup> particles within the polar vortex (Fahey et al., 2001). A comprehensive description of many parameters that characterize stratospheric clouds and their environment is now

# **ACPD**

4, 2513-2531, 2004

# Liquid particle in the Arctic stratosphere

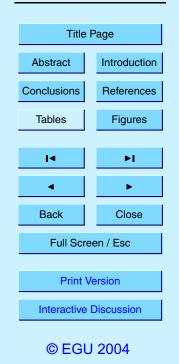


#### available (Newman et al., 2002).

Today we know that polar stratospheric clouds (PSCs) can consist of solid and liquid particles and their existence is controlled by atmospheric temperatures and relevant gas phase mixing ratios. Apart from sulfuric acid tetrahydrate aerosol, nitric acid tri-<sup>5</sup> hydrate (NAT) particles have the highest equilibrium temperature  $T_{NAT}$ . The critical temperature  $T_{STS}$  below which supercooled ternary solution (STS) droplets exist is well below  $T_{NAT}$ , around 3 K above the frost point  $T_{ice}$ . The formation of solid particles requires overcoming a nucleation barrier. Ice freezes out of STS only 3–4 K below the frost point (Koop et al., 2000). Ice particles can serve as a site for the heterogeneous nucleation of NAT particles (Koop et al., 1997). It has become clear that an additional formation process of NAT above  $T_{ice}$  is required to explain many PSC observations (Larsen et al., 2002; Drdla et al., 2003). In contrast to the formation of solid ice or NAT particles there is no nucleation barrier for the growth of liquid STS. Below a certain threshold they begin to swell due to the combined uptake of mainly water and nitric

acid (Carslaw et al., 1994).

Reported in this paper are results from a balloon campaign performed from Kiruna, Sweden, in early December 2002. The campaign was part of the joint US and European SOLVE-2/VINTERSOL project. The measurements captured a very early period of PSC formation in the 2002/2003 arctic winter. On 4 December 2002 between 20 and 27 km several passes through a PSC were accomplished using controlled up-


- and 27 km several passes through a PSC were accomplished using controlled updown motions of the balloon. The balloon flight was carried out exclusively in the cold polar vortex without mountain lee-wave activity. The coldest temperatures encountered during the flight were several degrees above  $T_{ice}$ . During the flight the majority of particles were liquid STS droplets, but solid particles were also present. In a separate
- <sup>25</sup> paper Larsen et al. (2004) shed light on the formation process of the various particles encountered. In the following we address the close correlation of the observed liquid stratospheric particles with the ambient atmospheric temperature. We also compare model predictions with derived H<sub>2</sub>O/HNO<sub>3</sub> molar ratios.

Despite the progress in PSC research, one important minor constituent expected

# **ACPD**

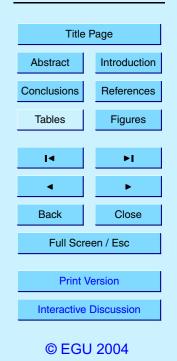
4, 2513–2531, 2004

## Liquid particle in the Arctic stratosphere



to be present in PSC particles – hydrochloric acid, HCI – has never been measured in liquid or solid particles in the polar stratosphere. HCl is a relatively inert reservoir molecule, which can be chemically changed (activated) through heterogeneous reactions in or on PSC particles when the temperature drops well below 200 K. Although the HCl content of PSCs is of substantial importance, it has only been estimated in

the HCl content of PSCs is of substantial importance, it has only been estimated in atmospheric chemical or microphysical models. Here, we report first measurements of HCl in STS droplets.


The solubility of HCl in liquid aerosols has been treated in some detail in a review paper by Carslaw et al. (1997), which describes the fundamental principles of gas-liquid solution interactions and presents some experimental results besides model calcula-

- <sup>10</sup> solution interactions and presents some experimental results besides model calculations. The authors derive a number of relationships between gas and liquid phases of participating species, based on Henry's law, to permit calculations of the amount of gases dissolved in liquid aerosols. It is important to recognize in experimental research that just a few degree change in temperature can alter considerably the  $H_2SO_4$
- <sup>15</sup> concentration in liquid particles and as a consequence the solubility of species that include HCl and HBr by orders of magnitude. Thus, it is difficult to simulate stratospheric conditions in laboratory experiments because of the high sensitivity of trace gas solubility to temperature (Hanson and Ravishankara, 1993; Zhang et al., 1993). Here we use for comparison the results of the model by Carslaw et al. (1995), which are similar
- to the predictions of the Tabazadeh et al. (1994) model and to the work done by Luo et al. (1995). Those models predict at low temperatures just above the frost point the fraction of H<sub>2</sub>O, HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, and in addition a number of trace gases dissolved in liquid ternary aerosols of the lower polar stratosphere. Within a broad range of parameters that include pressure and HNO<sub>3</sub> mixing ratio, models show, for atmospheric
- temperatures of around 187 K, HCl mixing ratios in STS between 1 and 0.1 weight%.

# **ACPD**

4, 2513-2531, 2004

## Liquid particle in the Arctic stratosphere



# 2. Meteorological conditions

In contrast to observations with the same set of instruments during previous winters in mountain induced leewave conditions over northern Scandinavia (Deshler et al., 2003b; Schreiner et al., 2003; Voigt et al., 2000), the observations in early Decem-

- <sup>5</sup> ber 2002 were characterized by the presence of a large synoptic-scale region with low temperatures over the North Atlantic. The cooling started around mid November when small regions with temperatures below  $T_{\text{NAT}}$  grew to large areas by the end of November and persisted throughout December within the stable arctic vortex. On 4 December, when the measurements took place, the northern part of Scandinavia was
- <sup>10</sup> clearly inside the cold pool on the 550 K potential temperature level. Due to low surface winds no orographic induced leewave activity occurred. The observed PSC particles most probably formed in air parcels that spent several days at temperatures between  $T_{ice}$  and  $T_{NAT}$ . Temperature histories (Larsen et al., 2004) show that the air did neither experience temperatures below  $T_{ice}$  nor strong cooling or heating rates, in contrast to
- the situation one year before in December 2001 (Deshler et al., 2003b). For the first time this kind of comprehensive in situ investigations of polar stratospheric clouds were performed exclusively inside the cold polar vortex without any leewave activity.

#### 3. Observations

Over the last few years, an aerosol composition mass spectrometer (ACMS) has
 <sup>20</sup> been developed that provided the first chemical analysis of polar stratospheric clouds (Schreiner et al., 1999b). More recent flights, with additional instruments on the gon-dola, extended the characterization of PSCs and resulted in the first identification of NAT particles (Voigt et al., 2000). Within the ACMS stratospheric particles are concentrated by an aerodynamic focussing lens into a narrow beam, which is directed
 <sup>25</sup> through a differentially pumped vacuum system. The particle beam finally is stopped and evaporated within a small gold sphere. The evolved gases are analyzed by a

2517

Close

Full Screen / Esc

Print Version

Interactive Discussion

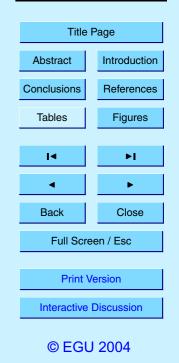
© EGU 2004

|◀

◀

Back

mass spectrometer with the ion source directly located at the exit of the small evaporation sphere. Surrounding the beam and the mass spectrometer are liquid helium pumps that provide a sufficiently high pumping speed to perform an analysis of the major content of PSC particles such as H<sub>2</sub>O and HNO<sub>3</sub>. Atmospheric gases, which enter the analysis system with the particle beam, are present in considerably reduced form due to the high-speed pumping. They are occasionally measured to monitor the performance and stability of the experiment. Since the ACMS has a very high sensitivity for condensed-phase material, the detection of HCl became possible when, during the last two years, improvements were made in the reduction of background gases and


<sup>10</sup> in higher ion beam intensities. Comprehensive descriptions of the focussing lens and the analysis system are provided by Schreiner et al. (1999a, 2002).

During the flight on 4 December 2002 from Kiruna, Sweden, clouds were present in a temperature range from as low as 184.5 K to about 187.5 K within the polar vortex. While the balloon moved up and down in a pressure range of 35 mbar to about 14 mbar,

- <sup>15</sup> three layers of clouds were traversed. Figure 1 presents the measurements for the first ascent of the balloon through the cloud. Within the cloud, temperatures stayed below  $T_{\text{NAT}}$ , but remained above the frost point (panel A). If temperature had gone below  $T_{\text{ice}}$  and ice particles had formed large peaks would have appeared in the ACMS water signal. Backscatter ratios at 940 and 480 nm (Rosen and Kjome, 1991) are shown in
- <sup>20</sup> panel B. The color index which is defined as the ratio between the backscatter ratio at 940 and 480 nm serves as an indicator of the particle phase, indicating solid particles below 500 K and above 580 K potential temperature. The phase can also be inferred from depolarization measurements at 532 nm using a laser backscattersonde (Adriani et al., 1999); however, these measurements are not shown. Particle size and num-
- <sup>25</sup> ber concentration were measured with four optical particle counters (OPCs) (Deshler and Oltmans, 1998; Deshler et al., 2003a). One OPC measured condensation nuclei (CN), r>0.01  $\mu$ m. Three measured particles with r>0.15–10.0  $\mu$ m, whereas one had a heated inlet to evaporate PSC particles and thus measured the background stratospheric aerosol upon which PSCs condense (Eidhammer and Deshler, submit-

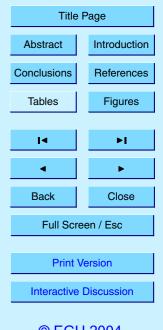
4, 2513-2531, 2004

## Liquid particle in the Arctic stratosphere



ted, 2004<sup>1</sup>). The cumulative size distribution from one OPC with unheated inlet is shown in Panel C. Finally, the particle composition, primarily water and nitric acid, was measured with the ACMS (Schreiner et al., 2002, 2003). In Fig. 1 only water signals are shown (panel D). The time constant of the system for detecting particle water is short

- <sup>5</sup> and thus water measured on mass 18 is a very good indicator for the onset of particle detection as well as when leaving a cloud. The few spikes in the water signal show the evaporation of single, most probably solid particles in the sphere where the particle beam is stopped. Over the whole altitude range large particles, >2.0 $\mu$ m existed, however, a broad middle layer from 500 to 580 K potential temperature was dominated by
- <sup>10</sup> numerous liquid particles masking the embedded large particles. Above and below the middle layer were layers of low concentration solid particles as evidenced by the high color index and large particles.


The main constituents of PSC particles are water and nitric acid measured with the ACMS on mass 18 ( $H_2O^+$ ) and on mass 63 ( $HNO_3^+$ ) and 46 ( $NO_2^+$ ). Of particular inter-

- est are the signals related to HCI (mass 36 and 38). When clouds were encountered, signals of those PSC particle related masses rose dramatically in the mass spectrometer. Figure 2 shows in panel C experimental evidence that indeed HCI contained in PSC particles was measured. Laboratory calibrations have shown that HCI undergoes little fractionation in the electron impact ion source and therefore masses 36 (H<sup>35</sup>CI)
- and 38 (H<sup>37</sup>Cl) can be used to identify hydrochloric acid within the mass spectrum with the unique isotope ratio of 3.1. Because it is a trace gas, caution must be applied when the data gathered on those mass peaks are interpreted. <sup>36</sup>Ar and <sup>38</sup>Ar contributions, besides those from the instrument background, must be subtracted to derive a net HCl signal. From measurements of N<sub>2</sub> and <sup>40</sup>Ar, which are occasionally monitored,
  the potential abundance of the two lighter Ar isotopes can be estimated. In addition, their isotope ratio <sup>36</sup>Ar: <sup>38</sup>Ar equals 5.5, while the ratio for <sup>35</sup>Cl: <sup>37</sup>Cl is 3.1. This ratio, as an exclusive indicator for HCl, has been verified during laboratory calibrations of

# ACPD

4, 2513-2531, 2004

## Liquid particle in the Arctic stratosphere



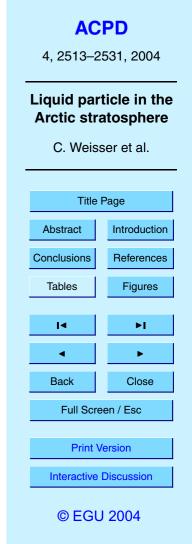
<sup>©</sup> EGU 2004

<sup>&</sup>lt;sup>1</sup>Eidhammer, T. and Deshler, T.: Evaporation of polar stratospheric cloud particles, in situ, in a heated inlet, Atmos. Chem. Phys., submitted, 2004.

the mass spectrometer. The general background correction was obtained when the gondola travelled outside the clouds. The average Cl isotope ratio, although with considerable scatter, is  $3.2\pm0.3$  and thus identifies the isotopes of HCl. Both mass peaks are only present during those parts of the flight when the water signal increased during the encounter with stratospheric clouds (panel A, low mass 18 resolution).

Calibrations of the mass spectrometer before and – if possible – after the balloon flight are a critical component in the analysis of the data. As in past experiments the instrument was calibrated using a dynamic flow system (Kohlmann, 2000; Schreiner et al., 2002), which permits to admit well known amounts of gases that include N<sub>2</sub>, Ar, H<sub>2</sub>O, HNO<sub>3</sub>, and HCl to the mass spectrometer ion source. Since the payload was

- <sup>10</sup> H<sub>2</sub>O, HNO<sub>3</sub>, and HCI to the mass spectrometer ion source. Since the payload was recovered in good condition the instrument was also re-calibrated for the same gases of interest. Fortunately, the sensitivity of the instrument was found to be nearly the same as before the flight. We have only indirect checks on the instrument performance during the flight when atmospheric gases serve as monitors for its stability. Overall, the
- $_{15}\,$  performance of the mass spectrometer during the balloon flight reported in this paper appears to be stable with no changes in sensitivity detected. Therefore the molar ratios  $\rm H_2O/HNO_3$  and the abundance of HCl in liquid particles will be based on those calibrations.


## 4. Results

25

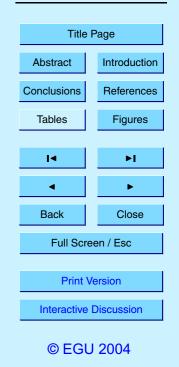
5

- <sup>20</sup> The discussion of results will start with the appearance and molar ratios of STS particles followed by a description of HCl in liquid aerosols.
  - 4.1. STS particles and atmospheric temperatures

On 4 December 2002 PSCs existed between 490 and 610 K potential temperature, approximately from 20 to 27 km altitude. Closely correlated PSC particle properties were detected with the different instruments, as shown in Fig. 1. The cloud was dominated



by a broad layer of mostly liquid particles ranging from 500 to 580 K potential temperature. These relatively small particles appear in high number concentrations with nearly all background aerosols activated. The ACMS responded with continuous high count rates of water and nitric acid signals. Further characteristics are a high backscatter ratio, a low color index, and low depolarization. Low concentrations of considerably 5 larger, probably solid particles were present over the whole altitude range wherever  $T < T_{NAT}$  as can be seen from the optical particle counter measurements. This is also supported by the volume depolarization. Although the depolarization values are low, they are not as low as expected for a pure liquid cloud of that backscatter ratio. Due to the reduced transmission efficiency of the aerodynamic lens for such large particles only a few were measured with the ACMS. For a composition analysis, however, the counting statistic is too low. In the backscatter data these low concentrations of solid particles are masked by the high number density of liquid particles. They can only be identified at the top and the bottom of the liquid layer by low backscatter, but higher color index and depolarization, when the temperatures become too high for the ex-15


istence of liquid particles. This gives rise to a "sandwich" structure, which has been previously observed by LIDAR measurements (Shibata et al., 1997; Stein et al., 1999; Biele et al., 2001). Here it seems clear that this structure is simply determined by the growth of STS as the temperature decreases in the middle of the cloud, rather than some features related to the development of the PSC.

One parameter of special interest in PSC research is the molar ratio of H<sub>2</sub>O/HNO<sub>3</sub> of aerosol particles. The calibrations before and after the flight are intended to derive those ratios with sufficient accuracy. Figure 2, panel B shows the measured molar ratios in comparison with model predictions (Carslaw et al., 1995). All measured ratios are between a factor of 2 and 3 higher than model values, i.e. particles are either deficient in HNO<sub>3</sub> or water-rich. In past experiments (Schreiner et al., 2003; Deshler et al., 2003b), which carried the same ACMS instrument with the same calibrations, molar ratios of liquid particles agreed well with model predictions. Those flights were conducted under lee-wave conditions while here particles in synoptic PSCs were analyzed.

# **ACPD**

4, 2513-2531, 2004

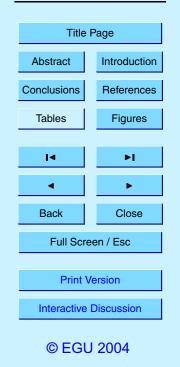
## Liquid particle in the Arctic stratosphere



Both ACMS and OPC data allow to derive the total aerosol volume. Panel E in Fig. 1 shows the measured aerosol volume for the first ascent. For the ACMS the fast and accurate water signal, the laboratory calibrations, and the measured molar ratios were used to asses the aerosol volume. Small corrections for the transmission efficiency <sup>5</sup> of the lens were applied. The aerosol volumes based on measurements of the two instruments agree very well. For comparison predictions for STS particles from the model by Carslaw et al. (1995) are shown assuming 11 ppbv gas phase HNO<sub>3</sub> and using the measured water mixing ratio and the sulfuric acid mixing ratio derived form the background sulfate aerosol measurement. Gas phase HNO<sub>3</sub> was not monitored on the gondola. Measurements of the MIPAS-B instrument that was flown two days later reveal HNO<sub>3</sub> values of 10 ppbv (Oelhaf, personal communication, 2003) in areas with temperatures above  $T_{STS}$ , but between 5–10 ppbv due to the uptake in the STS particles. The high atmospheric mixing ratio is consistent with the early period of PSC

Figure 3 shows the change in aerosol volume for the transit from inside the layer with liquid particles to outside at the top of the cloud around 590 K potential temperature as a function of temperature difference  $\Delta T = T - T_{ice}$ . This is an impressive demonstration, how the existence of STS particles is driven by ambient temperature. As soon as temperature drops below a certain threshold the sulfate background aerosols begin

observations prior to any denitrification.


- to swell due the uptake of water and nitric acid and become STS droplets. If they have enough time and if there is enough gas phase nitric acid available they reach equilibrium, which here seems to be the case. It should be noted, however, that the observations do not strictly follow the temporal evolution of the growth or evaporation of the droplets, but show the transition from warmer air masses to a layer with lower
- temperature where STS can exist. Figure 3 also compares the measurements with model predictions of the total aerosol volume for STS and NAT particles for a range of 5 to 11 ppbv HNO<sub>3</sub> calculated from the model by Carslaw et al. (1995).

There are also data that do not fit the STS nor NAT model predictions. At the bottom and top of the PSC (500 and 610 K potential temperature) the aerosol volumes

# ACPD

4, 2513-2531, 2004

## Liquid particle in the Arctic stratosphere



lie above the theoretical calculations for STS, but below NAT. These data points result from larger particles, that are present over the whole altitude range of the PSC as can be seen clearly in the size distribution measured by the OPC, Fig. 1, panel C. The depolarization measurements let us conclude that these particles are solid. In the ACMS

- <sup>5</sup> measurements and the backscattersonde data they are masked by the high concentrations of small liquid droplets when temperature is below the STS threshold. The large solid particles could be of NAT composition, but their volume did not reach equilibrium expected for NAT, while, as shown above, the volume calculations suggest that the measured STS droplets are in equilibrium with their environment. The deviation of the large solid particles from NAT equilibrium are also reproduced by model calculations
- presented in the accompanying publication by Larsen et al. (2004).

4.2. First measurements of HCl in STS particles

Model calculations by Carslaw et al. (1995) show a very high sensitivity of dissolved HCl in particles to atmospheric temperature and pressure. Over a small temperature range the HCl solubility will increase dramatically: Between 195 and 187 K, according to the Carslaw model, the HCl content will change by at least a factor of 100. Similarly, substantial changes are calculated over changes in altitude, all related in the end to the change in H<sub>2</sub>SO<sub>4</sub> and the water activity of the aerosol. Molar ratios from our measurements, displayed in Fig. 2 panel D, fall within 1 and 0.1 weight% and thus are in the range of model values for the flight conditions (~22 mbar, measured 6 ppmv H<sub>2</sub>O and estimated 11 ppbv HNO<sub>3</sub> and 1 ppbv HCl in the gas phase). The molar ratios were derived by integrating the measured signals over the time period shown. Adsorption

- and desorption processes for HCI on the walls of the small particle evaporation sphere are the main limitation on accuracy.
- To conclude, HCl in STS has been measured for the first time in a PSC with aerosols present in a temperature range of about 3K above  $T_{ice}$ . The derived molar ratios are clearly higher, even when the range of uncertainty is included, than predictions of PSC models (Carslaw et al., 1995; Tabazadeh et al., 1994). This difference may have impli-

4, 2513-2531, 2004

# Liquid particle in the Arctic stratosphere



cations for the main reaction (HCI+ClONO<sub>2</sub> $\rightarrow$ Cl<sub>2</sub>+HNO<sub>3</sub>) for chlorine activation involving liquid particles. Clearly it will proceed, as the analysis of Hanson and Ravishankara (1994) suggested, and thus will be a major factor in the subsequent magnitude of ozone reductions.

## **5 5. Conclusions**

Synoptic scale polar stratospheric clouds that formed without the influence of mountain leewaves were observed in early winter 2002/2003. Measurements described here as well as observations from previous campaigns (Deshler et al., 2003b) show clearly that over wide areas solid and liquid particles coexist in the Arctic stratosphere. Relatively large solid aerosol particles with low number density, most likely composed of 10 NAT, existed over a broad altitude range when  $T < T_{NAT}$ . When temperatures fell below  $T_{\rm STS}$  liquid STS particles immediately appeared. The high number density of the small droplets masked the solid particles for identification with backscattersondes, creating the appearance of a sandwich structure of the PSC with a broad layer of liquid droplets surrounded by solid particles at the bottom and on top. The observations here and in 15 December 2002 suggest that the presence of solid particles is almost independent of the temperature at the time of the observation as long as  $T < T_{NAT}$ , but it may strongly depend on the temperature history of the air parcels. In contrast, the measurements show a close correlation of the appearance of liquid STS droplets with local ambient temper-

ature. We confirm, particularly because of the accurate temperature measurements, that the predictions made by current STS models (Carslaw et al., 1995; Tabazadeh et al., 1994) are accurate in describing the growth of liquid STS particles as a function of temperature in the polar stratosphere.

We found, however, that the molar ratios of H<sub>2</sub>O/HNO<sub>3</sub> are about a factor of 2 higher than predicted by models. The ACMS was carefully calibrated before and after the balloon flight and underwent the same preparations as instruments in previous flights when in mountain leewave conditions the molar ratios of STS particles agreed well 4, 2513–2531, 2004

# Liquid particle in the Arctic stratosphere



with model predictions (Schreiner et al., 2003; Deshler et al., 2003b). Finally HCI was measured in liquid particles for the first time. Its volume abundance is higher than models predict by about a factor of 5 or more. Recalibrations after the flight confirmed that the instrument was stabile and that indeed HCI was detected.

- Acknowledgements. We like to thank the French balloon team from the the Centre National d'Etudes Spatiales, especially the late P. Faucon, for their excellent work to guide our payload through PSCs, supported by the Swedish Space Corporation. We are in debt to our machine and electronic shop personnel for their skillful work and last not least to B. Jacob, V. Haury, and O. Indris for their support in composing this paper. This research was supported by the Support by the Support of the European Union through the Environmental and Climate Program, the Ger-
- 10 Commission of the European Union through the Environmental and Climate Program, the German Bundesministerum für Bildung und Forschung (BMBF, AFO2000), and the U.S. National Science Foundation (OPP-0095158).

#### References

Adriani, A., Cairo, F., Viterbini, M., Mandolini, S., Pulvirenti, L., and Di Donfrancesco, G.: Multi-

- wavelength aerosol scatterometer for airborne experiments to study the optical properties of stratospheric aerosol, J. Atmos. and Oceanic Tech., 16, 1329, 1999. 2518
  - Biele, J., Tsias, A., Luo, B. P., Carslaw, K. S., Neuber, R., Beyerle, G., and Peter, T.: Nonequilibrium coexistence of solid and liquid particles in Arctic stratosperic clouds, J. Geophys. Res., 106, 22 991–23 007, 2001. 2521
- <sup>20</sup> Carslaw, K. S., Luo, B. P., Clegg, S. L., Peter, T., Brimblecombe, P., and Crutzen, P. J.: Stratospheric aerosol growth and HNO<sub>3</sub> gas phase depletion from coupled HNO<sub>3</sub> and water uptake by liquid particles, Geophys. Res. Lett., 21, 2479–2482, 1994. 2515
  - Carslaw, K. S., Luo, B. P., and Peter, T.: An analytic expression for the composition of aqueous HNO<sub>3</sub>-H<sub>2</sub>SO<sub>4</sub> stratospheric aerosols including gas phase removal of HNO<sub>3</sub>, Geo-
- <sup>25</sup> phys. Res. Lett., 22, 1877–1880, 1995. 2516, 2521, 2522, 2523, 2524, 2529, 2530, 2531
  Carslaw, K. S., Peter, T., and Clegg, S. L.: Modeling the composition of liquid stratospheric aerosols, Reviews of Geophysics, 35, 125–154, 1997. 2516

Deshler, T. and Oltmans, S. J.: Vertical profiles of volcanic aerosol and polar stratospheric

# **ACPD**

4, 2513–2531, 2004

## Liquid particle in the Arctic stratosphere

| Title Page             |              |  |
|------------------------|--------------|--|
| Abstract               | Introduction |  |
| Conclusions            | References   |  |
| Tables                 | Figures      |  |
|                        |              |  |
| 4                      | ►I           |  |
| •                      | •            |  |
| Back                   | Close        |  |
| Full Screen / Esc      |              |  |
|                        |              |  |
| Print Version          |              |  |
| Interactive Discussion |              |  |
| © EGU 2004             |              |  |

clouds above Kiruna, Sweden: Winters 1993 and 1995, J. Atmos. Chem., 30, 11–23, 1998. 2518

- Deshler, T., Hervig, M. E., Hofmann, D. J., Rosen, J. M., and Liley, J. B.: Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41° N), using balloonborne instruments, J. Geophys. Res., 108, 4167, 2003a. 2518
- <sup>5</sup> Deshler, T., Larsen, N., Weisser, C., Schreiner, J., Mauersberger, K., Cairo, F., Adriani, A., Di Donfrancesco, G., Ovarlez, J., Ovarlez, H., Blum, U., Fricke, K. H., and Dörnbrack, A.: Large nitric acid particles at the top of an Arctic stratospheric cloud, J. Geophys. Res., 108, 4517, 2003b. 2517, 2521, 2524, 2525
- Drdla, K., Schoeberl, M. R., and Browell, E. V.: Microphysical modelling of the 1999–2000 Arctic
  winter: 1. Polar stratospheric clouds, denitrification, and dehydration, J. Geophys. Res., 107 (printed in 108), 8312, 2003. 2515
  - Fahey, D. W., Gao, R. S., Carslaw, K. S., Kettleborough, J., Popp, P. J., Northway, M. J., Holecek, J. C., Ciciora, S. C., McLaughlin, R. J., Thompson, T. L., Winkler, R. H., Baumgardner, D. G., Gandrud, B., Wennberg, P. O., Dhaniyala, S., McKinney, K., Peter, T., Salawitch, R. J., Bui,
- <sup>15</sup> T. P., Elkins, J. W., Webster, C. R., Atlas, E. L., Jost, H., Wilson, J. C., Herman, R. L., Kleinböhl, A., and von König, M.: The detection of large HNO<sub>3</sub>-containing particles in the winter Arctic stratosphere, Science, 291, 1026–1031, 2001. 2514
  - Hanson, D. and Mauersberger, K.: Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere, Geophys. Res. Lett., 15, 855–858, 1988. 2529
- Hanson, D. R. and Ravishankara, A. R.: Uptake of HCI and HOCI onto sulfuric acid: Solubilities, diffusivities, and reaction, J. Phys. Chem., 97, 12309–12319, 1993. 2516
  - Hanson, D. R. and Ravishankara, A. R.: Reactive uptake of CIONO<sub>2</sub> onto sulfuric acid due to reaction with HCl and H<sub>2</sub>O, J. Phys. Chem, 98, 5728–5735, 1994. 2524

Kohlmann, A.: Kalibration von Massenspektrometern zur Aerosol-Analyse durch dynamische

- <sup>25</sup> Expansion von Wasserdampf, HNO<sub>3</sub> und HCI, Dissertation, Ruprecht-Karls-Universität Heidelberg, 2000. 2520
  - Koop, T., Luo, B. P., Biermann, U. M., Crutzen, P. J., and Peter, T.: Freezing of HNO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>O solutions at stratospheric temperatures: Nucleation statistics and experiments, J. Phys. Chem. A, 101, 1117–1133, 1997. 2515
- <sup>30</sup> Koop, T., Luo, B. P., Tsias, A., and Peter, T.: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions, Nature, 406, 611–614, 2000. 2515
  Larsen, N., Høyer Svendsen, S., Knudsen, B. M., Voigt, C., Weisser, C., Kohlmann, A.,

# **ACPD**

4, 2513–2531, 2004

# Liquid particle in the Arctic stratosphere

| Title Page             |              |  |
|------------------------|--------------|--|
| Abstract               | Introduction |  |
| Conclusions            | References   |  |
| Tables                 | Figures      |  |
|                        |              |  |
|                        | ►I           |  |
| •                      | •            |  |
| Back                   | Close        |  |
| Full Screen / Esc      |              |  |
| Print Version          |              |  |
|                        |              |  |
| Interactive Discussion |              |  |
| © EGU 2004             |              |  |

Schreiner, J., Mauersberger, K., Deshler, T., Krger, C., Rosen, J. M., Kjome, N. T., Adriani, A., Cairo, F., Di Donfrancesco, G., Ovarlez, J., Ovarlez, H., Dörnbrack, A., and Birner, T.: Microphysical mesoscale simulations of polar stratospheric cloud formation constrained by in-situ measurements of chemical and optical cloud properties, J. Geophys. Res., 107, 8301, 2002. 2515

- <sup>5</sup> Larsen, N., Knudsen, B. M., Høyer Svendsen, S., Deshler, T., Rosen, J. M., Kivi, R., Weisser, C., Schreiner, J., Mauersberger, K., Cairo, F., Ovarlez, J., Oelhaf, H., and Spang, R.: Formation of solid particles in synoptic-scale Arctic PSCs in early Winter 2002/2003, accepted, 2004. 2515, 2517, 2523
- Luo, B. P., Carslaw, K. S., Peter, T., and Clegg, S. L.: Vapour pressures of H<sub>2</sub>SO<sub>4</sub>/HNO<sub>3</sub>/HCI/HBr/H<sub>2</sub>O solutions to low stratospheric temperatures, Geophys. Res. Lett., 22, 247–250, 1995. 2516
  - Newman, P. A., Harris, N. R. P., Adriani, A., Amanatidis, G. T., Anderson, J. G., Braathen, G. O., Brune, W. H., Carslaw, K. S., Craig, M. S., DeCola, P. L., Guirlet, M., Hipskind, R. S., Kurylo, M. J., Küllmann, H., Larsen, N., Mégie, G. J., Pommereau, J.-P., Poole, L. R., Schoeberl,
- <sup>15</sup> M. R., Stroh, F., Toon, O. B., Trepte, C. R., and van Roozendael, M.: An overview of the SOLVE/THESEO 2000 campaign, J. Geophys. Res., 107, 8259, 2002. 2515
  - Ovarlez, J. and Ovarlez, H.: Stratospheric water vapor content evolution during EASOE, Geophys. Res. Lett., 21, 1235–1238, 1994. 2529

Rosen, J. M. and Kjome, N. T.: Backscattersonde: a new instrument for atmospheric aerosol research, Appl. Optics, 30, 1552–1561, 1991. 2518

20

Schreiner, J., Schild, U., Voigt, C., and Mauersberger, K.: Focusing of Aerosols into a Particle Beam at Pressures from 10 to 150 Torr, Aerosol Science and Technology, 31, 373–382, 1999a. 2518

Schreiner, J., Voigt, C., Kohlmann, A., Arnold, F., Mauersberger, K., and Larsen, N.: Chemical

 analysis of polar stratospheric cloud particles, Science, 283, 968–970, 1999b. 2517
 Schreiner, J., Voigt, C., Zink, P., Kohlmann, A., Knopf, D., Weisser, C., Budz, P., and Mauersberger, K.: A mass spectrometer system for analysis of polar stratospheric aerosols, Rev. Sci. Instrum., 73, 446–452, 2002. 2518, 2519, 2520

Schreiner, J., Voigt, C., Weisser, C., Kohlman, A., Mauersberger, K., Deshler, T., Kröger, C.,

Rosen, J., Kjome, N., Larsen, N., Adriani, A., Cairo, F., Di Donfrancesco, G., Ovarlez, J., Ovarlez, H., and Dörnbrack, A.: Chemical, microphysical, and optical properties of polar stratospheric clouds, J. Geophys. Res., 108, 8313, 2003. 2517, 2519, 2521, 2525

# **ACPD**

4, 2513–2531, 2004

## Liquid particle in the Arctic stratosphere

| Title Page             |              |  |
|------------------------|--------------|--|
| Abstract               | Introduction |  |
| Conclusions            | References   |  |
| Tables                 | Figures      |  |
|                        |              |  |
|                        | ►I           |  |
| •                      | •            |  |
| Back                   | Close        |  |
| Full Screen / Esc      |              |  |
| Print Version          |              |  |
| Interactive Discussion |              |  |
| © EGU 2004             |              |  |

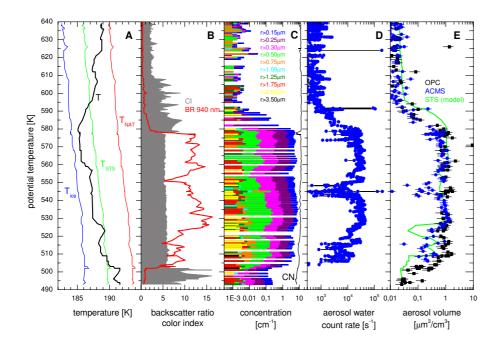
Shibata, T., Iwasaka, Y., Fujiwara, M., Hayashi, M., Nagatani, M., Shiraishi, K., Adachi, H., Sakai, T., Susumu, K., and Nakura, N.: Polar stratospheric clouds observed by lidar over Spitsbergen in the winter 1994/1995: Liquid particles and vertical "sandwich" structure, J. Geophys. Res., 102, 10829–10840, 1997. 2521

Stein, B., Wedekind, C., Wille, H., Immler, F., Müller, H., Wöste, L., del Guasta, M., Morandi,

- M., Stefanutti, L., Antonelli, A., Agostini, P., Rizi, V., Readelli, G., Mitev, V., Matthey, R., Kivi, R., and Kyrö, E.: Optical classification, existence temperatures, and coexistence of different polar stratospheric cloud types, J. Geophys. Res., 104, 23983–23993, 1999. 2521
  - Tabazadeh, A., Turco, R. P., and Jacobson, M. Z.: A model for studying the composition and chemical effects of stratospheric aerosols, J. Geophys. Res., 99, 12897–12914, 1994. 2516, 2523, 2524
- Voigt, C., Schreiner, J., Kohlmann, A., Zink, P., Mauersberger, K., Larsen, N., Deshler, T., Kröger, C., Rosen, J., Adriani, A., Cairo, F., Di Donfrancesco, G., Viterbini, M., Ovarlez, J., Ovarlez, H., David, C., and Dörnbrack, A.: Nitric acid trihydate (NAT) in polar stratospheric clouds, Science, 290, 1756–1758, 2000. 2514, 2517
- <sup>15</sup> Zhang, R., Wooldridge, P. J., Abbatt, J. P. D., and Molina, M. J.: Physical chemistry of the H<sub>2</sub>SO<sub>4</sub>/H<sub>2</sub>O binary system at low temperatures: Stratospheric implications, J. Phys. Chem., 97, 7351–7358, 1993.

ACPD

4, 2513–2531, 2004


# Liquid particle in the Arctic stratosphere

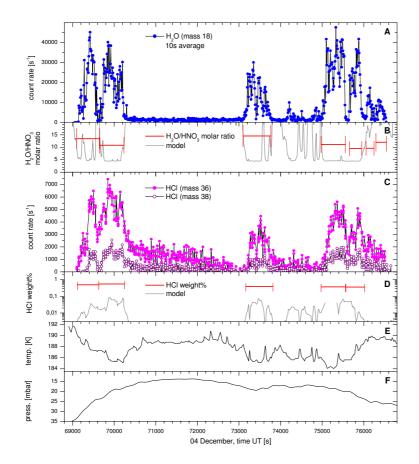
C. Weisser et al.

| Title Page             |              |  |
|------------------------|--------------|--|
| Abstract               | Introduction |  |
| Conclusions            | References   |  |
| Tables                 | Figures      |  |
|                        | _            |  |
| <b>I</b> ◀             | ►I           |  |
| •                      | •            |  |
| Back                   | Close        |  |
| Full Screen / Esc      |              |  |
|                        |              |  |
| Print Version          |              |  |
| Interactive Discussion |              |  |
| © EGU 2004             |              |  |

2516

10




**Fig. 1.** In-situ measurements during the first ascent through a PSC on 4 December 2002. **(A)** Measured air temperature, accuracy ±0.5 K, compared to measured  $T_{ice}$  and estimates of  $T_{NAT}$ and  $T_{STS}$ .  $T_{ice}$  is measured with a frost point hygrometer (Ovarlez and Ovarlez, 1994).  $T_{NAT}$ is calculated from (Hanson and Mauersberger, 1988) assuming 5 and 11 ppbv nitric acid and using the measured water vapor concentrations.  $T_{STS}$  is defined as the temperature at which the liquid particle volume changes by 30% for a temperature step of 0.1 K due to the condensation of nitric acid and water, calculated form Carslaw et al. (1995). **(B)** Backscatter ratio at 940 nm and color index. **(C)** Aerosol size and number concentration measured with optical particle counters. **(D)** Aerosol water (mass 18) measured by the aerosol composition mass spectrometer. **(E)** Aerosol volume derived from ACMS and OPC measurements in comparison with model predictions for STS using the measured water vapor and assuming 11 ppbv nitric acid.

# ACPD

4, 2513–2531, 2004

## Liquid particle in the Arctic stratosphere





**Fig. 2.** (A) Water contained in PSC particles measured on mass 18 (H<sub>2</sub>O), averaged over 10 s. (B) H<sub>2</sub>O/HNO<sub>3</sub> molar ratios derived from measurements and model (Carslaw et al., 1995). (C) HCl contained in liquid PSC particles measured on masses 36 (H<sup>35</sup>Cl) and 38 (H<sup>37</sup>Cl). (D) HCl weight% derived from measurements and model (Carslaw et al., 1995). (E) Measured atmospheric temperature. (F) Measured atmospheric pressure.

# ACPD

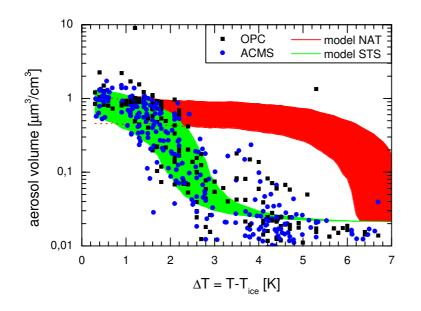
4, 2513-2531, 2004

# Liquid particle in the Arctic stratosphere

C. Weisser et al.

| Title Page             |              |  |
|------------------------|--------------|--|
| Abstract               | Introduction |  |
| Conclusions            | References   |  |
| Tables                 | Figures      |  |
|                        |              |  |
|                        | ►I           |  |
| 4                      | •            |  |
| Back                   | Close        |  |
| Full Screen / Esc      |              |  |
|                        |              |  |
| Print Version          |              |  |
| Interactive Discussion |              |  |
|                        |              |  |

© EGU 2004


# ACPD

4, 2513-2531, 2004

# Liquid particle in the Arctic stratosphere

#### C. Weisser et al.





**Fig. 3.** Aerosol volume measured by the optical particle counters and derived from the aerosol composition mass spectrometer as a function of temperature difference  $T - T_{ice}$ . Measurements are compared with aerosol volumes for STS and NAT predicted by model calculations, using Carslaw et al. (1995). The measured water vapor mixing ratio was used, and a range of 5 to 11 ppbv gas phase HNO<sub>3</sub> was assumed.